

New Targeted Therapies on the Horizon: Protein Degraders Filip Janku, MD, PhD

Disclosures

- Employment: Monte Rosa Therapeutics (Chief Medical Officer)
- Stocks or Options: Monte Rosa Therapeutics, Cardiff Oncology
- Presented content reflects my expert opinion and is not intended to represent views of Monte Rosa Therapeutics

Unmet Need to Expand the Target Space in Cancer

Protein Inhibition

Prerequisites

- ✓ Active site for binding
- ✓ Small molecule inhibitor
- ✓ Site occupancy necessary for therapeutic effect
- ✓ One molecule of drug inhibits one target (protein)

Adapted from Jan M. Nat Rev Clin Oncol 2021

Targeted Protein Degradation

Event-Driven Pharmacology: Targeted Protein Degradation Degrader Degrader metabolism/ excretion AND UBUBUBUBUB Protein re-synthesis Proteasome Prerequisites ✓ Active site for binding not always needed

- ✓ Tags protein for degradation
- ✓ Can be selective
- ✓ Catalytic mechanism

Adapted from Jan M. Nat Rev Clin Oncol 2021

Expanding Target Space through Molecular Glue Degraders (MGDs)

The Next Generation of Precision Medicine-based Small Molecule Drugs

Selectively editing the human proteome with rationally designed MGDs

		8	~	JIN M	
	Traditional small molecule inhibitors	Therapeutic Antibodies	MGDs	RNAi, RNA Editing	CRISPR/Gene Therapy
Ability to access undruggable space	X	\checkmark	\checkmark	\checkmark	\checkmark
Cellular permeability	\checkmark	X	\checkmark	\checkmark	\checkmark
Oral bioavailability	\checkmark	X	\checkmark	Х	X
Systemic distribution	\checkmark	\checkmark	\checkmark	Х	X
CNS Penetration	\checkmark	X	\checkmark	Х	X
Manufacturing scalability	\checkmark	\checkmark	\checkmark	X	Х

Proteolysis-Targeting Chimera (PROTAC)

PROTAC features

- Binding pocket required
- □ Highly effective catalytic targeted drugs
- □ Heterobifunctional molecules
- □ High molecular weight
- Hook-effect

Molecular Glue Degraders (MGDs)

MGD features

- No binding pocket needed
- Small molecules
- □ Clinically validated (lenalidomide)
- □ Historically perceived as "hard to discover"

Targeted Protein Degradation Timeline and Milestones

Dale et al. Nat Rev Cancer 2021

MGD Evolution: IMiDs

1961: Thalidomide confirmed as a cause of birth defects

1990's-2000's: Thalidomide repurposed as anticancer drug

2005: Lenalidomide, thalidomide analog approved by FDA

2010: CRBN identified as thalidomide interactor

2013: Pomalidomide receives accelerated approval

2014: Description of CRBN mediated selective degradation of IKZF1/3

Examples of Molecular Glue Degraders in Clinical Trials

Drug	Target	Indication	Phase
DKY709	Helios	Diverse cancers	Phase I
CC-90009	GSPT1	AML	Phase I
CC-92480	IKZF1/3	Multiple myeloma	Phase I
CC-99282	IKZF1/3	NHL	Phase I
Iberdomide	IKZF1/2	Multiple myeloma	Phase III
CFTZ7455	IKZF1/3	Myeloma, NHL	Phase I
BTX-1188	GSPT1, IKZF1/3	Diverse cancers	Phase I

Examples of PROTAC Degraders in Clinical Trials

Drug	Target	Indication	Phase
ARV-110	AR	Prostate cancer	Phase II
ARV-471	ER	Breast cancer	Phase II
ARV-766	AR	Prostate cancer	Phase I
DT2216	BCL-XL	Diverse cancers	Phase I
NX-2127	BTK, IKZF1/2	B-cell malignancies	Phase I
NX-5948	ВТК	B-cell malignancies	Phase I
FH-609	BRD9	Synovial sarcoma	Phase I

Alternative Approaches to Protein Degradation

- LYTAC Lysosometargeting chimeras
- **AUTAC** Autophagytargeting chimera
- ATTEC Autophagosometethering compound
- RNA degradation (e.g. RIBOTAC)

Ding et al. Trends Pharmacol Sci 2020

MGDs, PROTACs vs. Emerging Approaches

Тх	Degradation	Targets	Advantages	Limitations
MGD	Proteasome	Intracellular proteins	Established, selectivity, catalytic	Dependent on E3, ubiquitination and proteasome, discovery
PROTAC	Proteasome	Intracellular proteins	Established, selectivity, catalytic	Dependent on E3, ubiquitination and proteasome, complex molecules
LYTAC	Endosome/ lysosome	Extracellular, transmembr. proteins	Extracellular, transmembrane proteins; independent of ubiquitination and proteasome	Large molecular weight and poor permeability; possible induction of immune response in vivo
AUTAC	Autophagy	Intracellular proteins; organelles	Target spectrum; proteasome- independent; can degrade mitochondria	Understanding MOA; dependent on K63 ubiquitination; possible influence on selective autophagy
ATTEC	Autophagy	Intracellular proteins; non- protein autoph. substrates	Target spectrum; direct targeting to the degradation machinery	The LC3-bound chemical moieties need to be solved; lack of studies on designed chimeras

Protein vs. RNA Degradation

Dey Cell Chemical Biology 2019

Targeted Protein Degradation: Beyond Cancer

- > Neurological disorders
- >Inflammatory and autoimmune disorders
- Cardiovascular disorders
- Metabolic disorders
- ➢ Hemoglobinopathies

Conclusions

- Targeted Protein Degradation can have more potent inhibitory effect than classical inhibition
- Targeted Protein Degradation with MGDs can unravel additional "undruggable" space such as transcription factors
- Targeted Protein Degradation has therapeutic potential similar to gene editing technologies, with less complexity