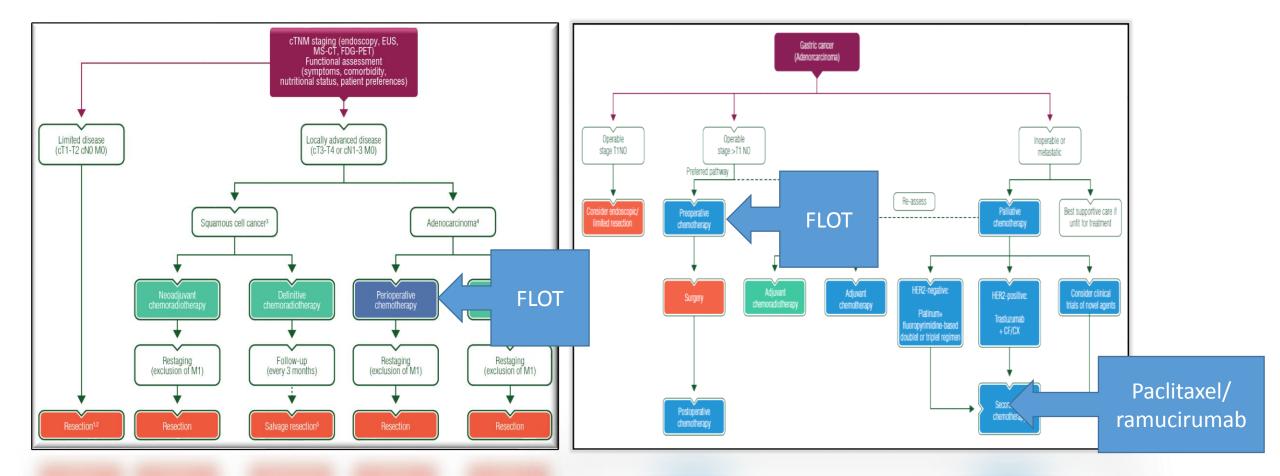
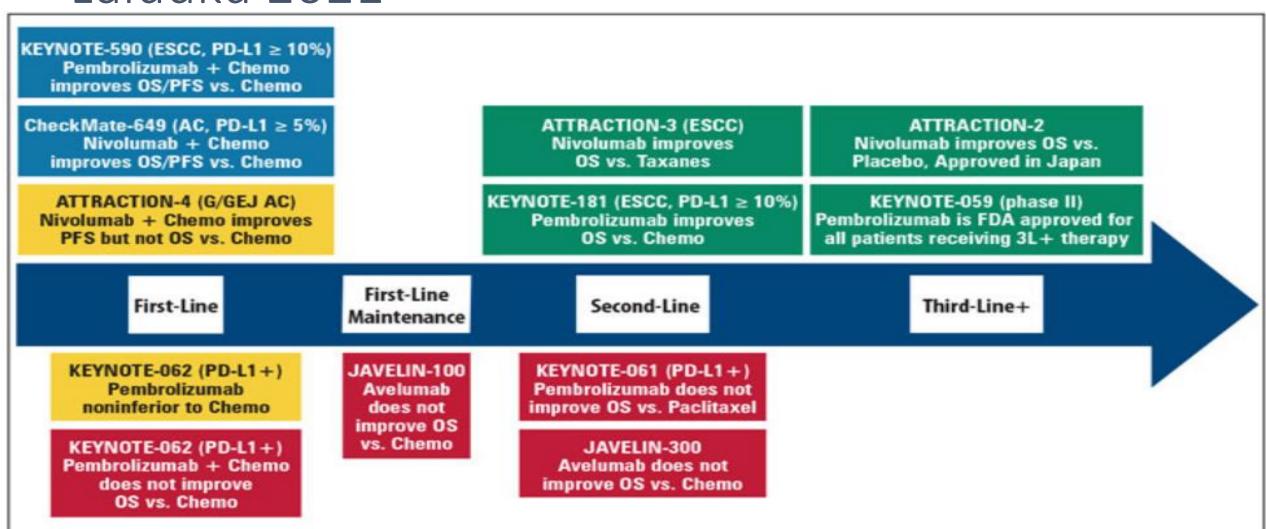


ASCO GI 2021


Radka Obermannová, KKOP, MOÚ
Prague Onco 20.1.21

Úvod

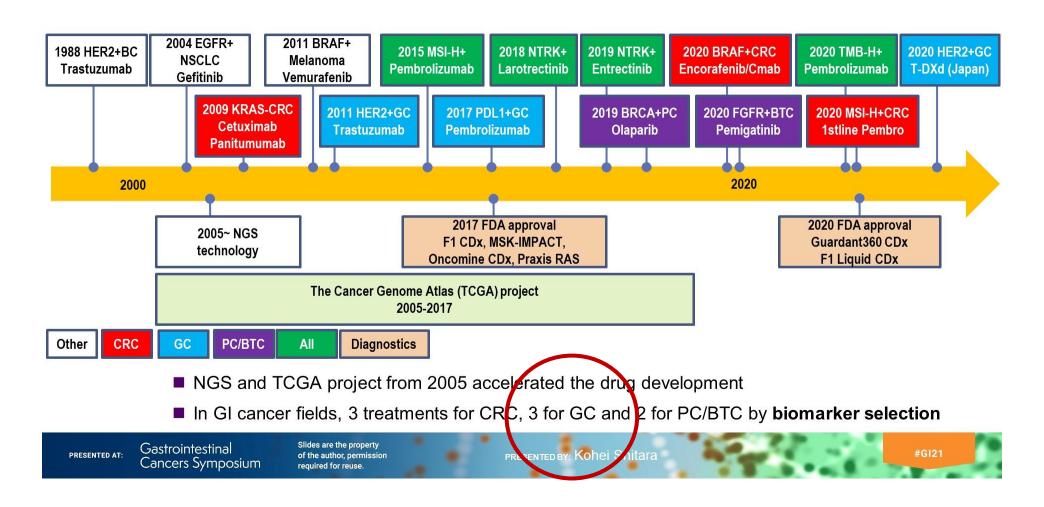
- Současná guidlines v ČR
- Imunoterapie u karcinomu jícnu a žaludku
- Cílená terapie v blízké budoucnosti?
- Vybraná data z ASCO GI 2021


ESMO guidelines- karcinom jícnu a žaludku 2016 a ČR 2021

Lordick et al. Ann Oncol 2016 Sep;27(suppl 5):v50-v57

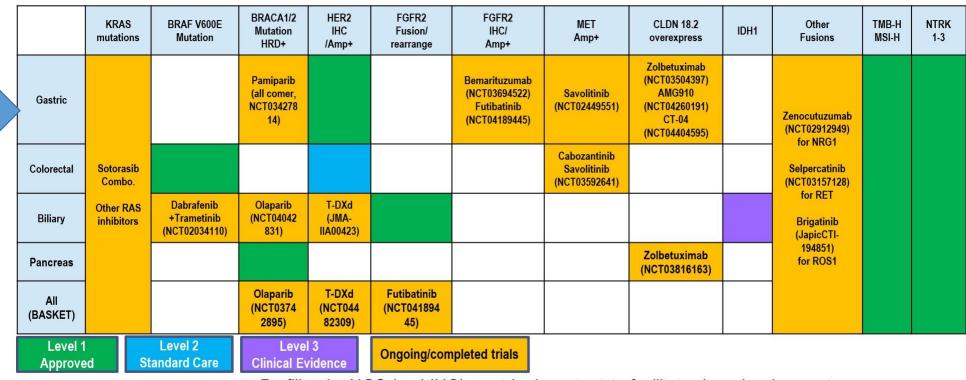
Smyth EC et al. Ann Oncol 2016 Sep;27(suppl 5):v38-49

Imunoterapie v léčbě karcinomu jícnu a žaludku 2021


Kdo má zisk z terapie?

- interpretace dat ze studií
- Jedná se o heterogenní onemocnění a ne všichni pacienti mají benefit z imunoterapie

- pacienti s adenokarcinomem žaludku(nikoliv jednoznačně)GEJ
- Pacienti s dlaždicobuněčným karcinomem jícnu
- muži
- asijské etnikum
- pacienti s vyšší PD-L expresí

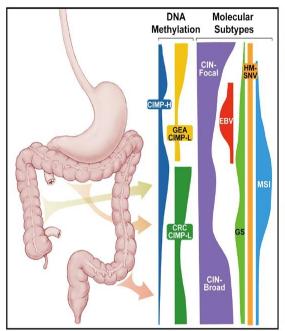

FDA schválená terapie u GI nádorů

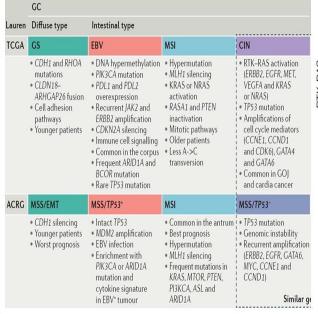
Approval of targeting agents for GI cancers

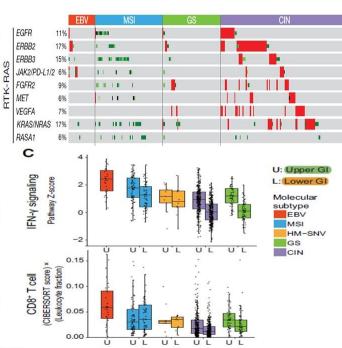
Budoucnost cílené terapie

Candidates of Emerging Targets for GI cancers

- Profiling by NGS (and IHC) must be important to facilitate drug development.
- Role of ctDNA analysis?


PRESENTED AT:


Gastrointestinal
Cancers Symposium


Slides are the property
of the author, permission
required for reuse.

PRESENTED BY: Kohei Shitara
#GI21

TCGA subgroups in GI cancer

- At least 5 types; EBV, MSI, CIN, GS and HM-SNV
- Distinguished genomic or immunological feature

TCGA Cancer Cell 2018, Nature 2014 Ajani JA,et al. Nat Rev Dis Primers. 2017

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Kohei Shitara

CheckMate 577: Health-related quality of life in a randomized, double-blind phase 3 study of nivolumab versus placebo as adjuvant treatment in patients with resected esophageal cancer or gastroesophageal junction cancer

Eric Van Cutsem, MD, PhD¹; Prianka Singh, PharmD, MPH²; James M. Cleary, MD, PhD³; Ronan J. Kelly, MD, MBA⁴; Markus Moehler, MD, PhD⁵; Jaroslaw Kudzal, MD, PhD⁶; Guillermo Mendez⁻; Satoru Motoyama, MD, PhD˚; Elena Elimova MD, M.Sc., FRCPCҫ; Cecile Grootscholten, MD, PhD¹0; Xiaowu Sun, PhD¹¹; Fiona Taylor, MBiochem¹¹; Rachael Lawrance, CStat¹²; Brad Padilla, MPH¹¹; Alejandro Moreno-Koehler, MPH¹¹; Jenny Zhang, MD, PhD²; Steve I. Blum, MBA, MA²; Jaffer A. Ajani, MD¹²

¹University Hospitals Gasthuisberg, Leuven and KULeuven, Leuven, Belgium; ²Bristol Myers Squibb, Princeton, NJ; ³Dana Farber Cancer Institute, Boston, MA; ⁴The Charles A. Sammons Cancer Center at Baylor University Medical Center, Dallas, TX; ⁵Johannes-Gutenberg University Clinic, Mainz, Germany; ⁶Jagiellonian University, John Paul II Hospital, Cracow, Poland; ¬Fundacion Favaloro, Buenos Aires, Argentina; ⁶Akita University Hospital, Akita, Japan; ⁶Princess Margaret Cancer Centre, Toronto, ON, Canada; ⅙Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; ¹¹Adelphi Values, Boston, USA; ¹²Adelphi Values, Bollington, UK; ¹³The University of Texas MD Anderson Cancer Center, Houston. TX

Health-Related Quality of Life of Pembrolizumab Plus Chemotherapy Versus Chemotherapy as First-Line Therapy in Patients With Advanced Esophageal Cancer: The Phase 3 KEYNOTE-590 Study

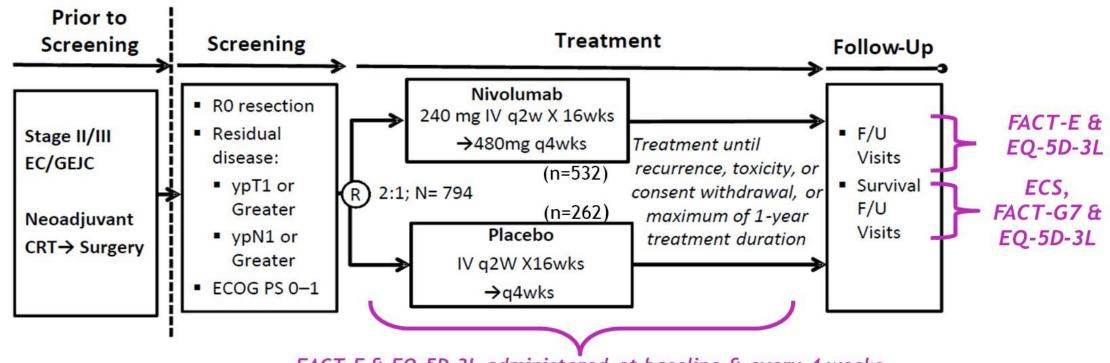
Wasat Mansoor,¹ Amit S. Kulkarni,² Ken Kato,³ Jong-Mu Sun,⁴ Manish A. Shah,⁵ Peter Enzinger,⁶ Antoine Adenis,⁷ Toshihiko Doi,⁸ Takashi Kojima,⁸ Jean-Philippe Metges,⁹ Zhigang Li,¹⁰ Sung-Bae Kim,¹¹ Byoung Chol Cho,¹² Patrapim Sunpaweravong,¹³ Maria Alsina Maqueda,¹⁴ Eray Goekkurt,¹⁵ Shailaja Suryawanshi,² Josephine Norquist,² Sukrut Shah,² Lin Shen¹⁶

¹Christie Hospital NHS Trust, Manchester, United Kingdom; ²Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA; ³National Cancer Center Hospital, Tokyo, Japan; ⁴Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea; ⁵Weill Cornell Medical College, New York, NY, USA; ³Dana Farber Cancer Institute, Boston, MA, USA; ₹IRCM, Inserm, Université Montpellier, ICM, Montpellier, France; ⁵National Cancer Center Hospital East, Kashiwa, Japan; ³CHU Brest – Institut de Cancerologie et d'Hematologie ARPEGO Network, Brest, France; ¹⁵Shanghai Chest Hospital Esophageal Disease Center, Shanghai, China; ¹¹Asan Medical Center, Seoul, South Korea; ¹²Severance Hospital, Yonsei University Health System, Seoul, South Korea; ¹¹Serince of Songkla University Hospital, Songkhla, Thailand; ¹⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹⁵Hematology Oncology Practice Eppendorf, and University Cancer Center Hamburg, Hamburg, Germany; ¹⁵Peking University Cancer Hospital & Institute, Beijing, China

CheckMate 577: Health-related quality of life in a randomized, double-blind phase 3 study of nivolumab versus placebo as adjuvant treatment in patients with resected esophageal cancer or gastroesophageal junction cancer

Eric Van Cutsem, MD, PhD¹; Prianka Singh, PharmD, MPH²; James M. Cleary, MD, PhD³; Ronan J. Kelly, MD, MBA⁴; Markus Moehler, MD, PhD⁵; Jaroslaw Kudzal, MD, PhD⁶; Guillermo Mendez⁻; Satoru Motoyama, MD, PhD˚; Elena Elimova MD, M.Sc., FRCPC⁶; Cecile Grootscholten, MD, PhD¹⁰; Xiaowu Sun, PhD¹¹; Fiona Taylor, MBiochem¹¹; Rachael Lawrance, CStat¹²; Brad Padilla, MPH¹¹; Alejandro Moreno-Koehler, MPH¹¹; Jenny Zhang, MD, PhD²; Steve I. Blum, MBA, MA²; Jaffer A. Ajani, MD¹²

¹University Hospitals Gasthuisberg, Leuven and KULeuven, Leuven, Belgium; ²Bristol Myers Squibb, Princeton, NJ; ³Dana Farber Cancer Institute, Boston, MA; ⁴The Charles A. Sammons Cancer Center at Baylor University Medical Center, Dallas, TX; ⁵Johannes-Gutenberg University Clinic, Mainz, Germany; ⁶Jagiellonian University, John Paul II Hospital, Cracow, Poland; ⁷Fundacion Favaloro, Buenos Aires, Argentina; ⁸Akita University Hospital, Akita, Japan; ⁹Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹⁰Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; ¹¹Adelphi Values, Boston, USA; ¹²Adelphi Values, Bollington, UK; ¹³The University of Texas MD Anderson Cancer Center, Houston, TX

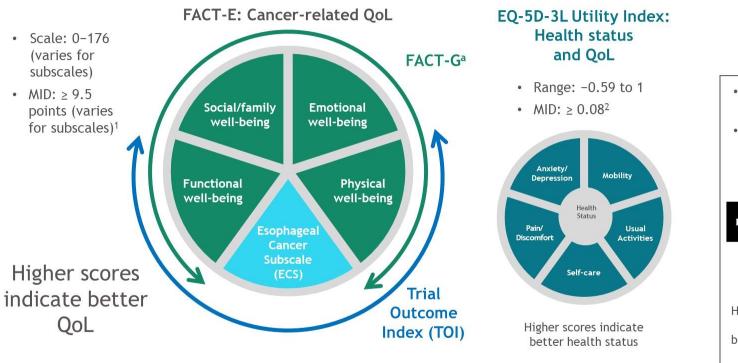

Background

- Nivolumab (NIVO) is the first adjuvant therapy to provide a statistically significant and clinically meaningful improvement in disease-free survival (DFS) versus placebo (PBO) in resected esophageal cancer (EC) / gastroesophageal junction cancer (GEJC) following neoadjuvant chemoradiotherapy as demonstrated by CheckMate 577
 Median DFS was doubled (NIVO 22.4 versus PBO 11.0 months)¹
- NIVO was well tolerated with an acceptable safety profile

HR 0.69 (96.4% CI 0.56-0.86; P = 0.0003) at interim analysis¹

- Most treatment-related adverse events (TRAEs) were Grade 1 or 2¹
- Frequency of serious TRAEs and TRAEs leading to discontinuation were ≤ 9% with NIVO and 3% with PBO¹
- Health-related quality-of-life (HRQoL) analyses were incorporated as exploratory endpoints as part of this clinical trial and presented here

Patient-Reported Outcome (PRO) Administration Schedule in CheckMate 577


FACT-E & EQ-5D-3L administered at baseline & every 4 weeks during 12-month treatment period

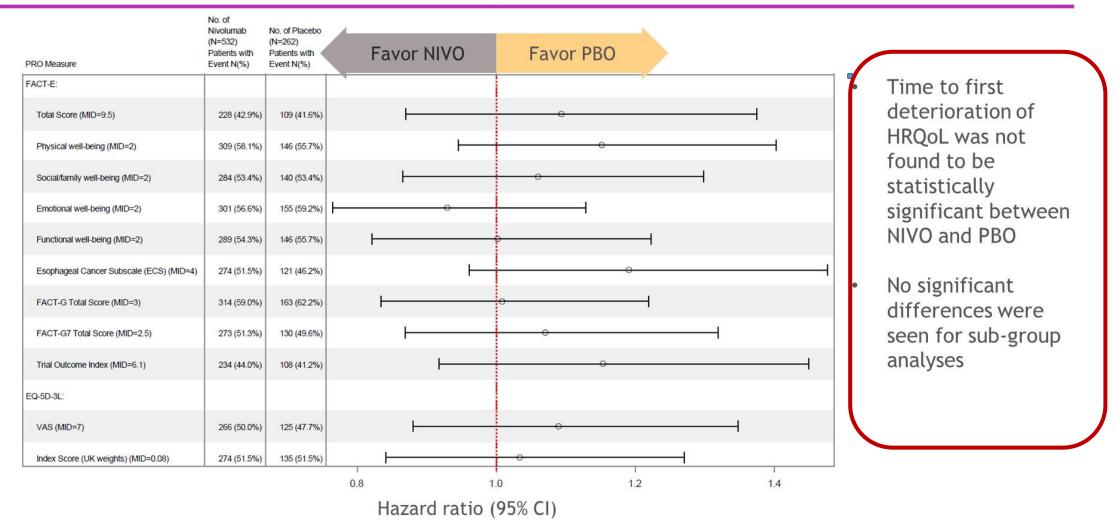
Primary endpoint: Disease-free survival

Secondary endpoints: Overall survival, overall survival rates at 1, 2, and 3 years

PRO exploratory endpoints: Functional Assessment of Cancer Therapy - Esophageal (FACT-E) questionnaire, EQ-5D-3L, Esophageal Cancer Subscale (ECS), and Functional Assessment of Cancer Therapy - General - 7-Item Version (FACT-G7)

PRO Instruments

MID: minimally important difference; QoL=quality of life; VAS=visual analogue scale


FACT MIDs from Yost & Eton. Eval Health Prof. 2005;28(2):172-191, Ringash et al. Cancer 2007;110(1):196-202, Yount et al. Qual Life Res 2007;16(10):1615-1626, or based on distributional statistics from Darling et al. Cancer 2006;107(4):854-863 and Yanez et al. Ann Oncol 2013;24(4):1073-1078.

^aFACT-G7 consists of a subset of seven items from three FACT-G domains: three items from Physical well-being (lack of energy, pain, and nausea), one item from Emotional well-being (condition will get worse), and three items from Functional well-being (sleep, enjoy life, content with quality of life)

²EQ-5D-3L MID from Pickard et al. Health Qual Life Outcomes 2007;5:70

Time to First Deterioration: Quality-of-Life Metrics*

Time to first PRO deterioration defined as the time from randomization until the first deterioration in PRO score meeting or exceeding the MID/responder definition threshold corresponding to that score. Additionally, time to deterioration analysis is considered an exploratory objective, and was not a pre-specified analysis in clinical SAP.

Health-Related Quality of Life of Pembrolizumab Plus Chemotherapy Versus Chemotherapy as First-Line Therapy in Patients With Advanced Esophageal Cancer: The Phase 3 KEYNOTE-590 Study

Wasat Mansoor,¹ Amit S. Kulkarni,² Ken Kato,³ Jong-Mu Sun,⁴ Manish A. Shah,⁵ Peter Enzinger,⁶ Antoine Adenis,⁷ Toshihiko Doi,⁸ Takashi Kojima,⁸ Jean-Philippe Metges,⁹ Zhigang Li,¹⁰ Sung-Bae Kim,¹¹ Byoung Chol Cho,¹² Patrapim Sunpaweravong,¹³ Maria Alsina Maqueda,¹⁴ Eray Goekkurt,¹⁵ Shailaja Suryawanshi,² Josephine Norquist,² Sukrut Shah,² Lin Shen¹⁶

¹Christie Hospital NHS Trust, Manchester, United Kingdom; ²Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA; ³National Cancer Center Hospital, Tokyo, Japan; ⁴Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea; ⁵Weill Cornell Medical College, New York, NY, USA; ⁶Dana Farber Cancer Institute, Boston, MA, USA; ⁷IRCM, Inserm, Université Montpellier, ICM, Montpellier, France; ⁸National Cancer Center Hospital East, Kashiwa, Japan;

⁹CHU Brest – Institut de Cancerologie et d'Hematologie ARPEGO Network, Brest, France; 10Shanghai Chest Hospital Esophageal Disease Center, Shanghai, China;

¹¹Asan Medical Center, Seoul, South Korea; ¹²Severance Hospital, Yonsei University Health System, Seoul, South Korea;

¹³Prince of Songkla University Hospital, Songkhla, Thailand; ¹⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹⁵Hematology Oncology Practice Eppendorf, and University Cancer Center Hamburg, Hamburg, Germany; ¹⁶Peking University Cancer Hospital & Institute, Beijing, China

KEYNOTE-590 Study Design (NCT03189719) and Primary Study Results

Pembrolizumab

200 mg IV Q3W

for ≤35 cycles

Chemotherapy^a

Placebo^b

Chemotherapy^a

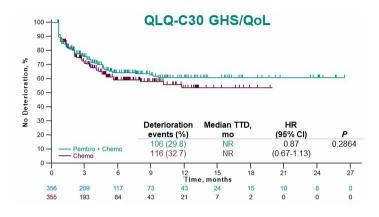
Key Eligibility Criteria

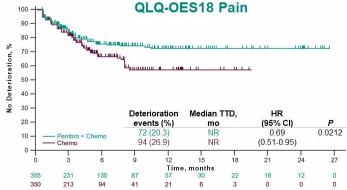
- Locally advanced unresectable or metastatic EAC or ESCC or advanced/metastatic EGJ Siewert type 1 adenocarcinoma
- Treatment naïve
- ECOG PS 0 or 1
- Measurable disease (RECIST v1.1)

Stratification Factors

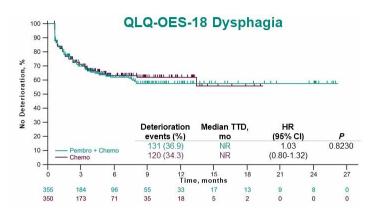
- Asia vs Non-Asia region
- ESCC vs EAC
- ECOG PS 0 vs 1

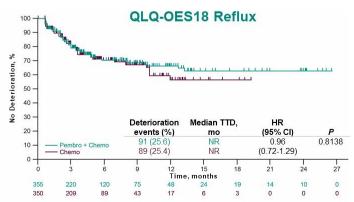
Dual primary end points: OS and PFS Secondary end points: ORR Other secondary and exploratory end points: Patient-Reported Outcomes (PROs)


R (1:1)

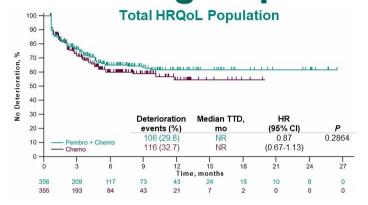

- Pembro + chemo provided statistically significant and clinically meaningful improvements over placebo + chemo
 - OS (HR, 0.73, *P* < 0.0001)
 - PFS (HR, 0.65, P < 0.0001)
 - ORR (% difference, 15.8, P < 0.0001)
- Comparable safety profiles between the two treatment groups; no new safety signals detected
- Mean (SD) time on therapy was 7.7 months (6.84) for pembro + chemo versus 5.8 months (4.76) for placebo + chemo

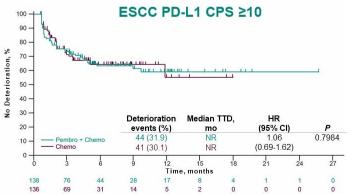
All treatments were continued for the specified number of cycles or until disease progression, intolerable toxicity, withdrawal of consent, or physician decision.

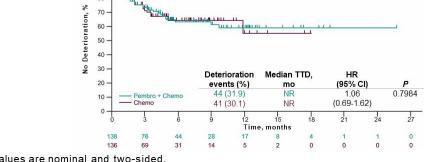

^a5-FU 800 mg/m² IV for days 1-5 Q3W for ≤35 cycles + cisplatin 80 mg/m² IV Q3W for ≤6 cycles. ^bSaline IV Q3W for ≤35 cycles.

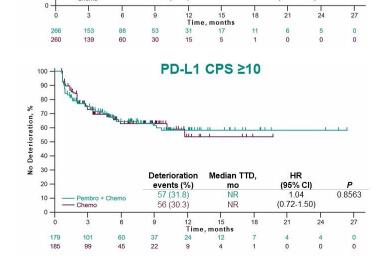

Time to Deterioration: Total HRQoL Population

 $\frac{355}{350}$ $\frac{231}{213}$ $\frac{12}{9}$ P values are nominal and two-sided. Data cutoff: July 2, 2020


Time to Deterioration in QLQ-C30 GHS/QoL: **Patient Subgroups**


60 -


10 -


---- Pembro + Chemo

- Chemo

Deterioration

events (%)

82 (30.8)

88 (33.8)

ESCC

Median TTD.

HR

(95% CI)

0.89

(0.66-1.20)

0.4458

P values are nominal and two-sided Data cutoff: July 2, 2020

Conclusions

- In the primary analysis, pembrolizumab plus chemotherapy provided superior OS, PFS, and ORR versus placebo and chemotherapy and a manageable safety profile
- All HRQoL measures remained stable and similar over 18 weeks in the pembrolizumab plus chemotherapy and placebo plus chemotherapy treatment group, with no difference between groups
- The addition of pembrolizumab to chemotherapy maintained HRQoL measures relative to baseline and did not worsen HRQoL compared with chemotherapy alone
- These results support the use of pembrolizumab plus chemotherapy as first-line therapy for locally advanced and metastatic esophageal cancer or Siewert type 1 EGJ adenocarcinoma

Nivolumab in advanced esophageal squamous cell carcinoma (ATTRACTION-1/ONO-4538-07): Minimum of 5-year follow-up

Ken Kato¹, Yuichiro Doki², Takashi Ura³, Yasuo Hamamoto⁴, Takashi Kojima⁵, Takahiro Tsushima⁶, Shuichi Hironaka⁷, Hiroki Hara⁸, Taroh Satoh⁹, Satoru Iwasa¹, Kei Muro¹⁰, Hirofumi Yasui⁶, Keiko Minashi¹¹, Kensei Yamaguchi¹², Atsushi Ohtsu¹³, Yuko Kitagawa¹⁴

¹Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan; ²Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; ³Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan (current affiliation: Department of Clinical Oncology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan); ⁴Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan; ⁵Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ⁶Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan; ⁷Clinical Trial Promotion Department, Chiba Cancer Center, Chiba, Japan (current affiliation: Department of Medical Oncology and Hematology, Oita University Faculty of Medicine, Oita, Japan); ⁸Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan; ⁹Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, Japan; ¹⁰ Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan; ¹¹ Clinical Trial Promotion Department, Chiba Cancer Center, Chiba, Japan; ¹² Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan (current affiliation: Department of Gastroenterological Chemotherapy, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan); ¹³ National Cancer Center Hospital East, Kashiwa, Japan; ¹⁴ Department of Surgery, Keio University School of Medicine, Tokyo, Japan

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

ATTRACTION-1: Study design

• ATTRACTION-1 is an open-label, single-arm, multicenter, phase 2 clinical trial evaluating the efficacy and safety of nivolumab in patients with advanced esophageal squamous cell carcinoma (ESCC) [ONO-4538-07/JapicCTI-No.142422]. Here, we report the findings of ATTRACTION-1 based on a minimum follow-up of five years.

Key eligibility criteria

- Refractory or intolerant to fluoropyrimidine-, platinum-, and taxane-based chemotherapy
- Squamous cell carcinoma, adenosquamous cell carcinoma, or adenocarcinoma
- Esophageal cancer located in the cervical esophagus or thoracic esophagus
- ECOG performance status 0–1

Nivolumab 3 mg/kg Q2W

Until disease progression or unacceptable toxicity

Primary endpoint: ORR (central review)

Additional endpoints: ORR (investigator's assessment), OS, PFS, time to response, DOR and others

• All enrolled patients (N = 65) had ESCC and the median (range) age was 62 (49–80) years.

DOR, duration of response; ECOG; Eastern Cooperative Oncology Group; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Q2W, every two weeks

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Prof. Ken Kato

ATTRACTION-1: Overall response and safety

Activity of nivolumab								
Best overall response (Central review)	All (N= 64)	2-year survivors (N = 11)	3-year survivors (N = 7)	5-year survivors (N = 4)				
Complete response	3 (4.7)	3 (27.3)	3 (42.9)	3 (75.0)				
Partial response	8 (12.5)	3 (27.3)	2 (28.6)	0				
Stable disease	16 (25.0)	3 (27.3)	1 (14.3)	0				
Progressive disease	29 (45.3)	1 (9.1)	0	0				
Not assessable	8* (12.5)	1 (9.1)	1 (14.3)	1 (25.0)				

*including subjects who had no target lesion. FAS full-analysis set

Adverse events and treatment-related adverse events						
	F	Adverse events	Treatment-related adverse events			
	Any grade	Grade 3-4	Any grade	Grade 3-4		
Overall	56 (86.2)	21 (32.3)	41 (63.1)	13 (20.0)		
Diarrhea	15 (23.1)	0	11 (16.9)	0		
Pneumonia	14 (21.5)	6 (9.2)	5 (7.7)	2 (3.1)		
Decreased appetite	12 (18.5)	2 (3.1)	6 (9.2)	2 (3.1)		
Rash	9 (13.8)	0	7 (10.8)	0		
Cough	8 (12.3)	0	1 (1.5)	0		
Nasopharyngitis	8 (12.3)	0	0	0		
Fatigue	7 (10.8)	1 (1.5)	5 (7.7)	1 (1.5)		
Pruritus	7 (10.8)	0	6 (9.2)	0		
Malaise	7 (10.8)	0	3 (4.6)	0		
Constipation	7 (10.8)	0	1 (1.5)	0		

No Grade 5 adverse events were observed

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Prof. Ken Kato

Conclusions

- Nivolumab demonstrated durable efficacy in patients with advanced ESCC based on a minimum of 5-year update of ATTRACTION-1 study.
- No new safety signals with nivolumab were identified.
- Long-term survivors tended to show the deeper response (e.g., complete response) of nivolumab in this study.

For additional information, see poster # 207

PRESENTED AT:


Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Prof. Ken Kato

Perioperative FLOT plus anti-PD-L1 Avelumab (FLOT-A) in resectable oesophagogastric adenocarcinoma (OGA): Interim safety analysis results from the ICONIC trial

A. Athauda¹, N. Starling¹, I. Chau¹, D. Cunningham¹, D. Watkins¹, S. Rao¹, E. Kalaitzaki¹, E. Bourmpaki¹, M. Davidson¹, A. Gillbanks¹, R. Lazaro-Alcausi¹, M.Monypenny¹, R. Begum¹, K. von Loga¹, I. Rana¹, P. Patel¹, S. Doran¹, S. Kumar¹, M. A. Chaudry^{1*}, M. Gerlinger^{1,2*}

- 1. The Royal Marsden Hospital NHS Foundation Trust, London & Surrey
- 2. The Institute of Cancer Research, London *joint senior authors

This research was financially supported by Merck KGaA, Darmstadt, Germany, as part of an alliance between Merck KGaA and Pfizer.

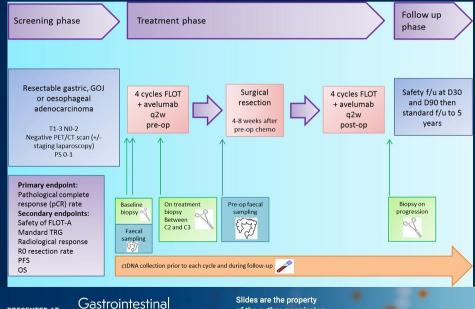
PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

G121

Background

ICONIC is a single-arm phase II trial investigating the safety and efficacy of perioperative FLOT-A in resectable OGA.


Following a 3+3 design safety run-in phase, standard dose FLOT* with 10mg/kg IV Avelumab administered every 2 weeks was taken forward into the main study.

The aims of this pre-planned interim analysis were to assess perioperative safety and R0 resection rates.

Trial schema

Cancers Symposium

PRESENTED AT:

of the author, permission

required for reuse

Methods

Key eligibility criteria:

- Histologically confirmed localised and operable OGA
- PS 0-1
- Considered fit for surgery
- No prior therapy for OGA
- No prior antibody targeting T-cell co-stimulation or checkpoint pathways

The interim analysis occurred after the 15th patient treated at the above dose reached 30 days post-surgery.

*5-FU 2600mg/m² over 24 hours, Oxaliplatin 85mg/m², Docetaxel 50mg/m², Folinic acid 200mg/m², Primary prophylactic GCSF

PRESENTED BY: Dr Avani Athauda

Discussion/Conclusions

- This is the first interim safety data of combining FLOT chemotherapy with an anti-PD-L1 inhibitor in the perioperative setting in OG adenocarcinoma.
- In these 15 patients treated with FLOT-A, no intra-operative complications have occurred and no unexpected complications have been identified post-operatively.
- The ICONIC trial will continue recruitment until 40 patients have been treated and undergone surgery.
- Biomarker analysis (tumour mutation burden, immune cell infiltration, immunotherapy response signatures) in pre-operative and on-treatment biopsies and ctDNA is ongoing.

Contact: Dr Marco Gerlinger, Chief investigator marco.gerlinger@icr.ac.uk
Mr M Asif Chaudry, Surgical lead
asif.chaudry@rmh.nhs.uk

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr Avani Athauda

Results: Surgical outcomes

- Median time from last chemotherapy to surgery = 6.4 weeks.
 - Reason for delay (>8 weeks following pre-operative treatment) in 3/15 patients = fitness for surgery.
- All patients (100%) achieved an R0 resection.
- · No intra-operative complications were reported.
- There were no emergency re-operations.

Table 5: Post-operative complications in N=14 patients from whom data was available at interim analysis

Complication (8 patients)	Clavien- Dindo grade	Timing of complication Early (≲3 days) Intermediate (4-30 days) Late (>30 days)	Outcome	Action taken
Anastamosis/conduit leak	IIIa	Intermediate	Resolved	Percutaneous drainage and Esosponge
Supraventricular tachycardia	II	Intermediate	Resolved	No action taken
Pleural effusion	Illa	Intermediate	Resolved	Percutaneous drainage
Chest infection	Illa	Late	Resolved	Prolonged antibiotics
Sub-acute bowel obstruction	11	Late	Resolved	NG tube and conservative management
Clostridium Difficile diarrhoea	II	Intermediate	Resolved	No action taken
Chest infection and pyrexia	11	Early	Resolved	Prolonged antibiotics
Infection unknown source	11	Early	Resolved	Prolonged antibiotics
Chest infection	11	Intermediate	Resolved	Prolonged antibiotics

Table 4: Surgical procedures and metrics (N=15 patients)

	No of patients (%)			
Procedure Minimally invasive Ivor-Lewis oesophagogastrectomy with two-field radical lymphadenectomy	10 (67)			
Left thoracoabdominal oesophago-	1 (7)			
gastrectomy Gastrectomy with D2 lymphadenectomy	4 (27)			
ASA pre-operative risk score I II III	1 (7) 7 (47) 7 (47)			
Inotropic support required • Yes • No	12 (80) 3 (20)			
Blood transfusion required Yes No	1 (7) 14 (93)			
Operation time in minutes (median [IQR])	300 [260-380]			
Time to extubation in hours (median [IQR])	6 [4-24]			
Days on vasopressors/inotropes (median [IQR])	0 [0-1]			
APACHE score D1 post-op (median [IQR])	12 [10-15]			
Days in CCU (ITU/HDU) (median [IQR])	3 [2-4]			
Days in hospital (median [IQR])	13 [11-16]			

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr Avani Athauda

Discussion/Conclusions

- This is the first interim safety data of combining FLOT chemotherapy with an anti-PD-L1 inhibitor in the perioperative setting in OG adenocarcinoma.
- In these 15 patients treated with FLOT-A, no intra-operative complications have occurred and no unexpected complications have been identified post-operatively.
- The ICONIC trial will continue recruitment until 40 patients have been treated and undergone surgery.
- Biomarker analysis (tumour mutation burden, immune cell infiltration, immunotherapy response signatures) in pre-operative and on-treatment biopsies and ctDNA is ongoing.

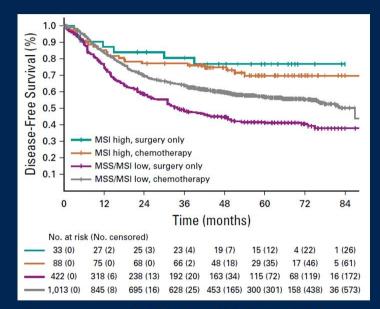
Contact: Dr Marco Gerlinger, Chief investigator marco.gerlinger@icr.ac.uk
Mr M Asif Chaudry, Surgical lead
asif.chaudry@rmh.nhs.uk

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr Avani Athauda

The interaction between microsatellite instability high (MSI-high) resectable gastric cancer and chemotherapy on survival


Elvira L Vos, Steven B Maron, Robert W Krell, Masaya Nakauchi, Megan Fiasconaro, Henry S Walch, Marinela Capanu, Geoffrey Y Ku, David H Ilson, Yelena Y Janjigian, Chad M Vanderbilt, Laura H Tang, Vivian E Strong

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

Introduction

- Meta-analysis of 4 trials found:
 - patients with MSI-high gastric cancer did not benefit from chemotherapy
- Our aim:
 - retrospectively study interaction between MSI status and chemotherapy (neoadjuvant or adjuvant) on prognosis

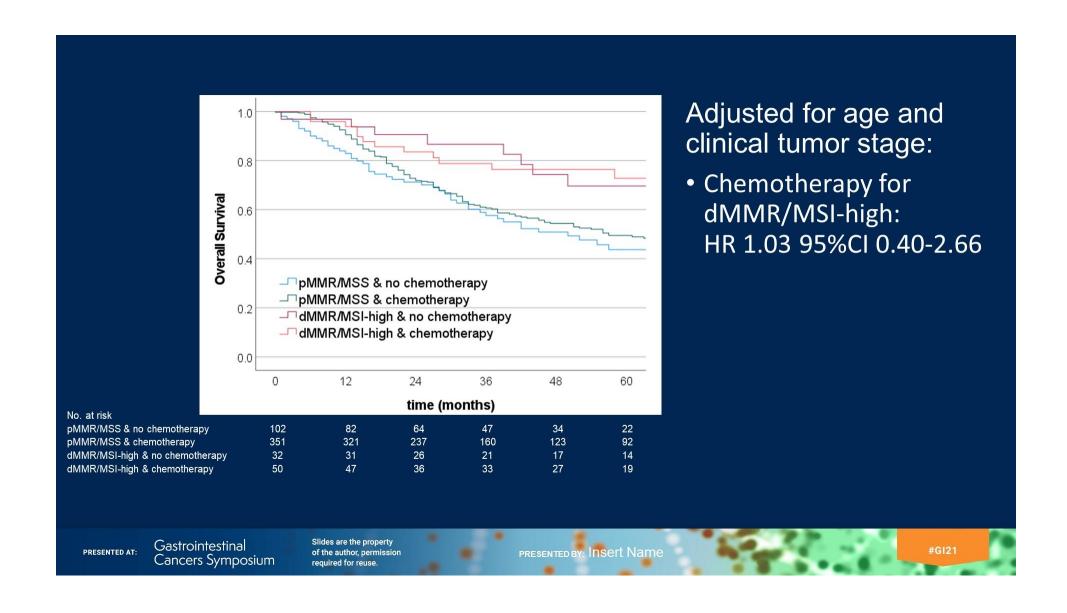
Pietrantonio et al. J Clin Oncol 2019;37:3392-3400

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Insert Name

Results


- Clinically locally advanced gastric adenocarcinoma with resection 2000-2018
 N=1770
 - MSI status by next-generation-sequencing (NGS) or immunohistochemistry (IHC)
 N=535
 - 82/535 (15.3%) mismatch repair deficient (dMMR) or MSI-high
- Pathological neoadjuvant chemotherapy response grade 1 (90-100%):
 - 0/40 dMMR/MSI-high vs 43/274 (16%) pMMR/MSS, P=0.007

PRESENTED AT: Gastrointestinal Cancers Symposium

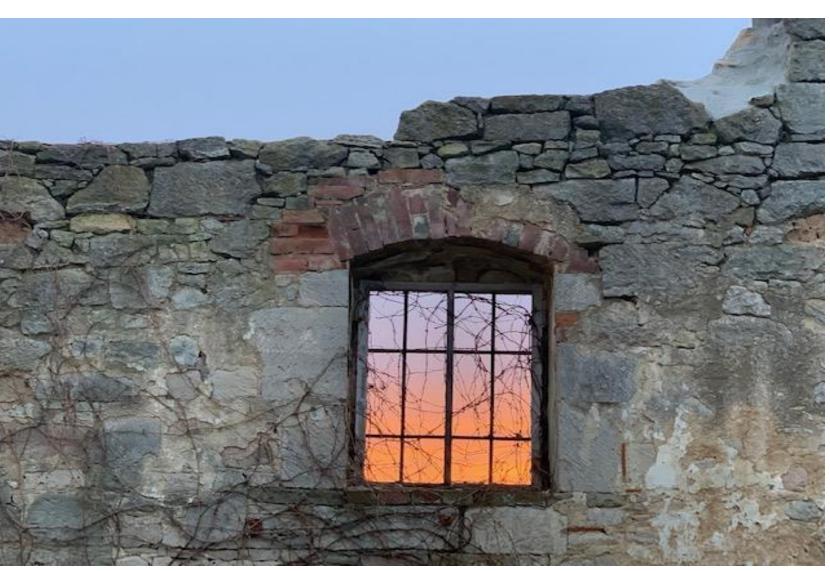
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Insert Name

+G121

Conclusions

- Incidence of MSI-high tumors in clinically locally advanced, resectable, gastric cancer: 15%
- In patients with MSI-high tumors:
 - pathological response to neoadjuvant chemotherapy is worse
 - overall survival (OS) is better
 - OS was not altered by neoadjuvant/adjuvant chemotherapy
- We recommend assessing MSI status in gastric cancer


ENTED AT: Gastrointestinal
Cancers Symposium

Slides are the property of the author, permission required for reuse.

PRESENTED BY: Insert Name

Děkuji za pozornost.

