

January 31, 2020

Novel Approaches to Treatment of Gastrointestinal Stromal Tumor (GIST)

Filip Janku, MD, PhD

Associate Professor

Investigational Cancer Therapeutics (Phase I Clinical Trials Program)

Center Medical Director

Clinical & Translational Research Center

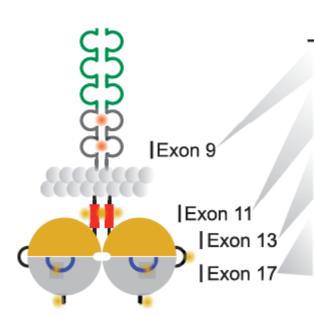
THE UNIVERSITY OF TEXAS

MD Anderson

Making Cancer History®

DISCLOSURE

Research Funding (through institution): Agios, Asana, Astellas, Astex, Bayer, BioMed Valley Discoveries, Bristol-Myers Squibb, Cotinga, Ideaya, Deciphera, FujiFilm Pharma, Genentech, Novartis, Piqur, Plexxikon, Proximagen, Symphogen, Sotio, Sanofi, SynthoRx, SpringBank Pharma, Synlogic

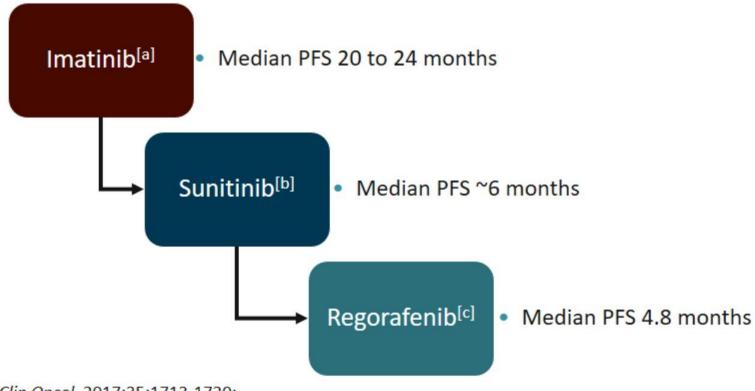

Consulting: Baush, Bicara, Deciphera, Guardant Health, Grail, Ideaya, IFM Therapeutics, Immunomet, Illumina, Jazz Pharmaceuticals, Novartis, Primmune Therapeutics, PureTech Health, Sotio, Synlogic, SpringBank Pharma, Tessa Therapeutics, Trovagene

Ownership Interests: Trovagene

Other: Bio-Rad, Biocartis

GIST BACKGROUND

- KIT mutations drive ~80% of GISTs
- Majority of patients with KIT primary mutations respond to 1st line imatinib but resistance develops most commonly due to secondary mutations in KIT
- Approved 2nd and 3rd line agents (sunitinib and regorafenib) confer modest clinical benefit compared with imatinib likely due to multiple drug-resistant mutations arising in individual tumors
- Unmet medical need for agents that can address breadth of primary/secondary KIT mutations across lines of therapy

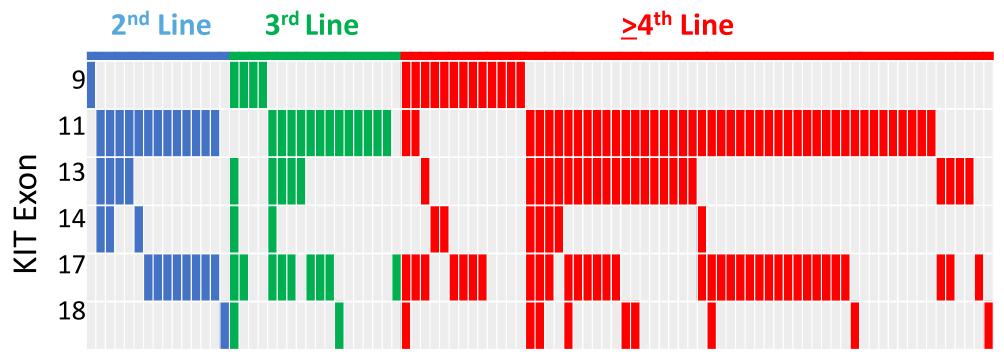

Domain	Gene	1° Mutation Frequency	2° Mutation Frequency
D5	KIT	10%	
JM	KIT PDGFRA	67 1	
TK1	KIT PDGFRA	1	56
A-Loop	KIT PDGFRA D84 PDGFRA	1 2V 5 1	41

Other important GIST subgroups:

- NF1-mutated
- SDH-mutated
- BRAF/KRAS-mutated
- Quadruple-negative (KIT/PDGFRA/SDH/RAS -wild-type)

Unmet Medical Need in GIST

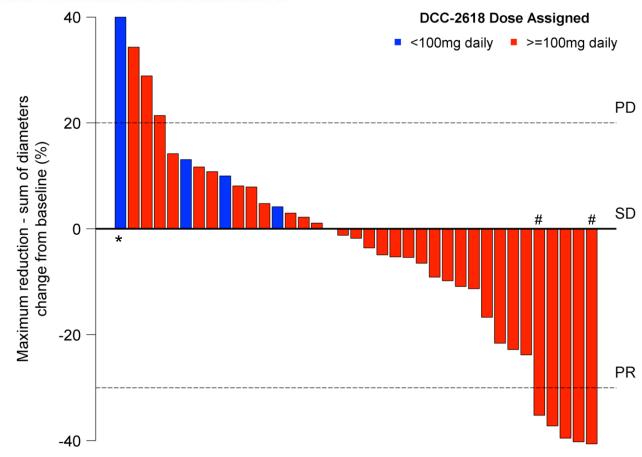
 Diminishing returns on kinase inhibition due to development of resistant mutations



a. Casali PG, et al. J Clin Oncol. 2017;35:1713-1720;

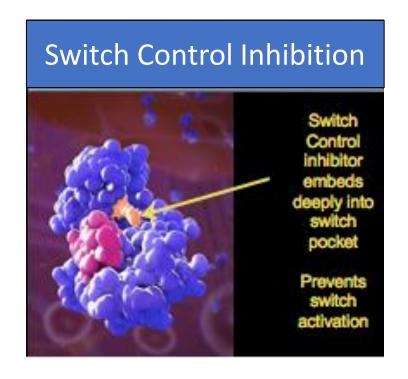
b. Demetri GD, et al. Lancet. 2006;368:1329-1338;

c. Demetri GD, et al. Lancet. 2013;381:295-302.


Liquid Biopsies (NGS) Detect Broad Spectrum of KIT Mutations in Previously Treated GIST

- > Each column represents an individual patient
- In pts where a KIT mutation was detected in baseline ctDNA, secondary KIT mutations in exon 13, 14 17 and 18 were found across 2nd to ≥4thline pts.

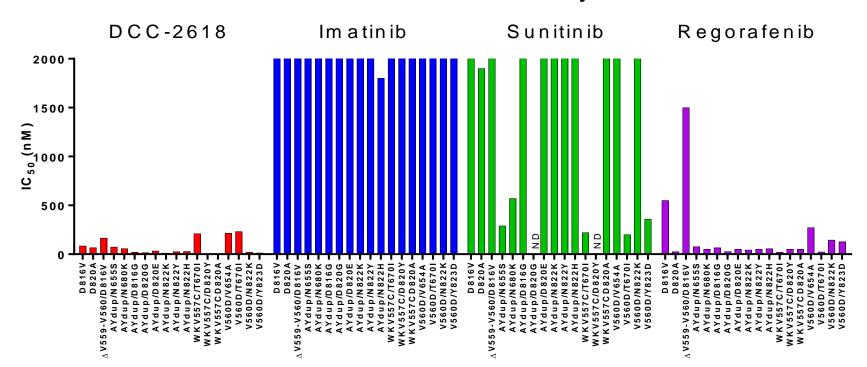
Investigational Approaches Ripretinib (DCC-2618)


- Selective KIT and PDGFRA switch-control inhibitor^[a]
- Phase 1 study
 - Efficacy in 4th-line
 - ORR 9%; mPFS 24 weeks

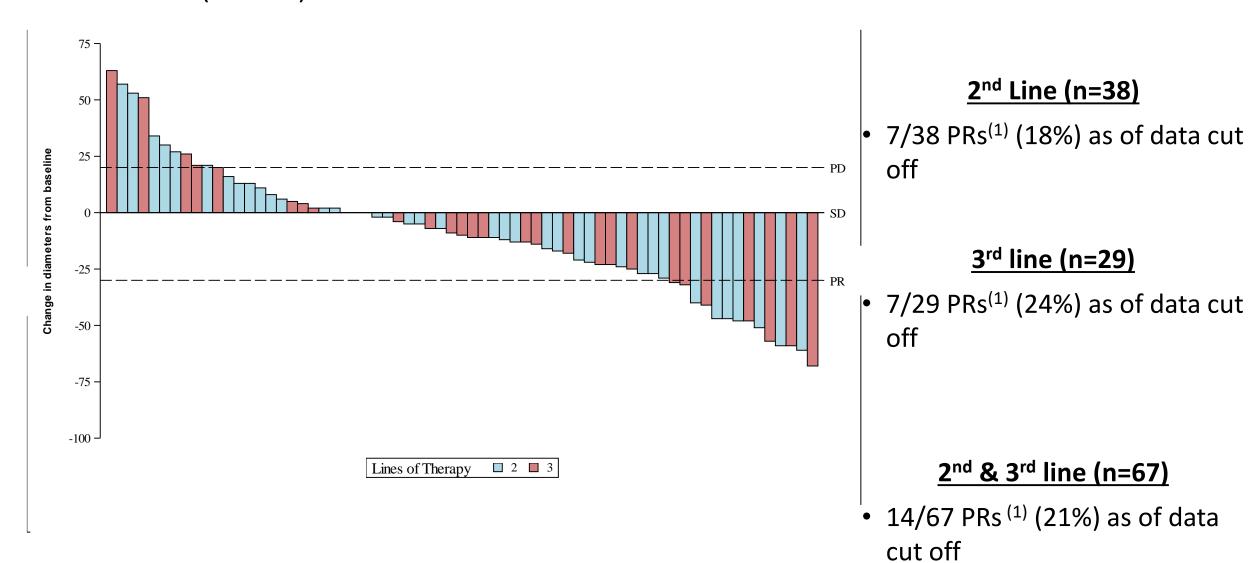
PD = Progressive disease, SD = Stable disease, PR = Partial response *66% increase in tumor size; *PR at RP2D

RIPRETINIB (DCC-2618) BACKGROUND

- DCC-2618 is a *KIT* and *PDGFRA* inhibitor resilient to gain-of-function and drug resistance mutations
 - Potency independent of ATP concentration
- DCC-2618 was designed to potently inhibit a broad range of mutations in KIT and PDGFRA kinases



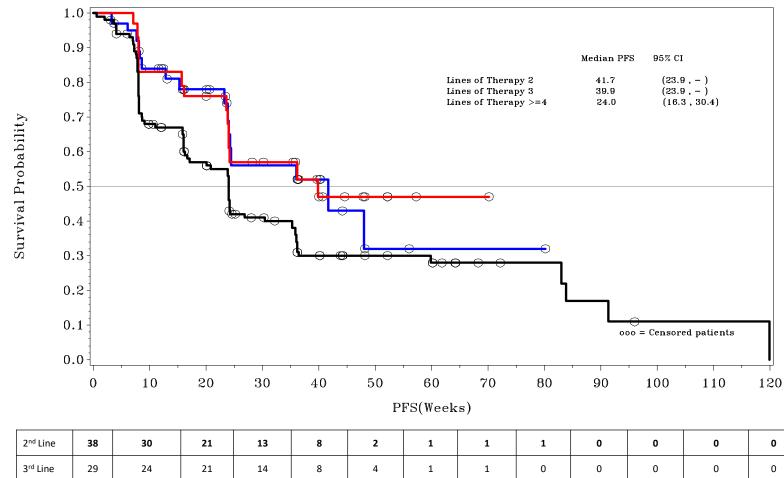
 Gastrointestinal stromal tumor (GIST) is an important disease to achieve proof-of-concept in the FIH study due to the multiplicity and heterogeneity of resistance mutations within KIT


RATIONALE FOR DCC-2618 STUDY

- Activity regardless whether primary mutation is in KIT Exon 9, Exon 11, or Exon 17
 - IC₅₀ for KIT Exon 11 deletion 3 nM, IC₅₀ PDGFRA D842V 60 nM
- Broad activity in secondary KIT mutations across Exons 13, 14, 17, and 18
 - Active metabolite DP-5439 possesses comparable activity across all mutations
- KIT T670I and V654A secondary mutations are the least sensitive to DCC-2618
 - IC_{50} for KIT T670I 221 nM , IC_{50} for 189 nM for KIT V654A

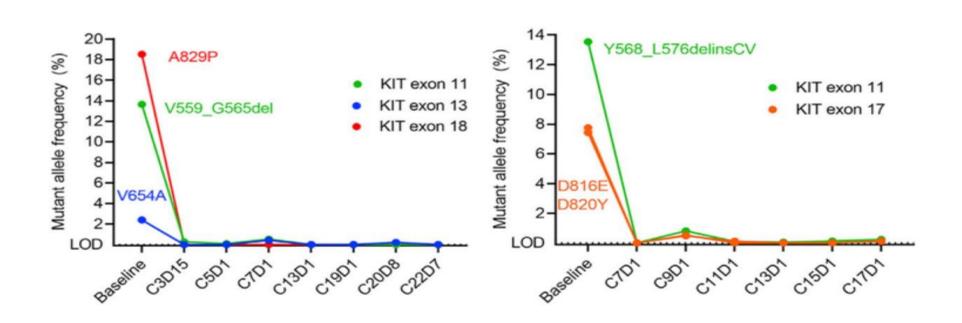
CHO KIT Mutant Assays

Best Response by RECIST in 2nd & 3rd Line GIST Patients at ≥100 mg/d DCC-2618 (n=67)

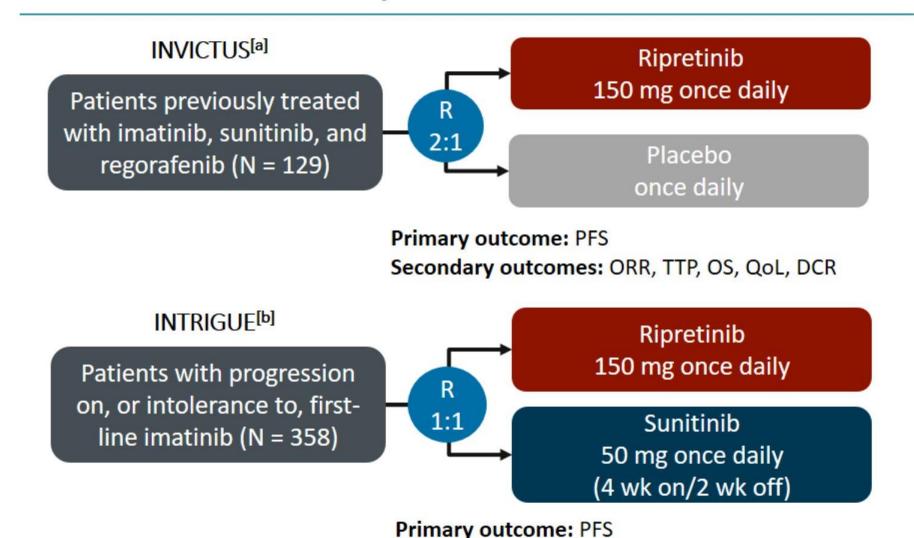

George, Janku ESMO 2018

Notes: (1) Includes unconfirmed responses in 2nd line (n=1) and 3rd line (n=3).

mPFS by Line of Therapy - Patients at ≥100 mg/d DCC-2618 (n=178)


Lines	N	mPFS	Number Censored	Active Patients
2	38	42 weeks	22 (58%)	61%
3	29	40 weeks	15 (52%)	59%
4+	111	24 weeks	40 (36%)	44%

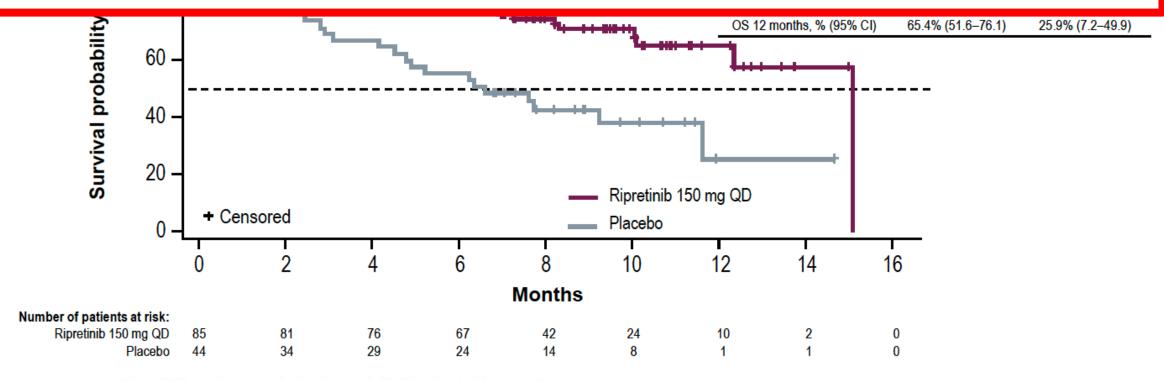
- DCC-2618 demonstrated prolonged progression free survival in a meaningful subset of patients across all lines of treatment
- Following IPDE, 63% (n=29) and 28% (n=13) of patients stayed on study for >8 and >16 weeks, respectively



Liquid Biopsy to Monitor Treatment Response With New Therapies

ctDNA-Assessed Mutant Allele Elimination With Ripretinib in 2 Patients With Resistant KIT Mutations

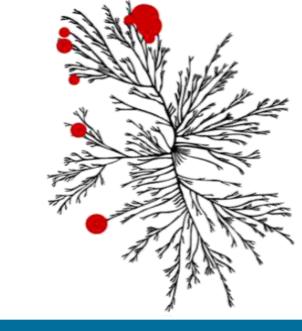
Phase 3 Trials of Ripretinib in GIST



Secondary outcomes: ORR, TTP, OS, QOL, DCR

a. ClinicalTrials.gov. NCT03353753;

b. ClinicalTrials.gov. NCT03673501.


TIME FROM FIRST PATIENT DOSED IN PHASE I TO PHASE III DATA PRESENTATION ~ 3.5 YEARS

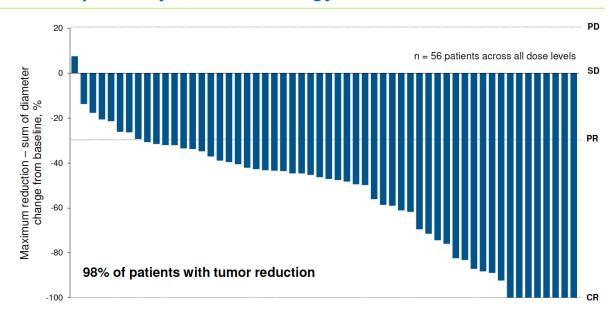
Von Mehren M, et al. Ann Oncol. 2019;30: Abstract LBA87.

Avapritinib: a highly selective and potent KIT/PDGFRA inhibitor for GIST

GIST mutation(s)		Medical need by mutation	Avapritinib biochemical IC ₅₀ 1
KIT Exon 11 deletion	JM	1L imatinib is effective 2L sunitinib/3L regorafenib	0.6 nM
KIT Exon 11 V560G	domain	have low ORR/short PFS	1 nM
KIT Exon 11/13	ATP	Approved 2L/3L agents have low ORR/short PFS	11 nM
KIT Exon 11/14	binding site		28 nM
KIT Exon 11/17	Activation		0.1 nM
PDGFRα D842V		No highly effective therapy in any line	0.24 nM

Avapritinib kinome selectivity

Clinical Trials


Phase 1 advanced GIST

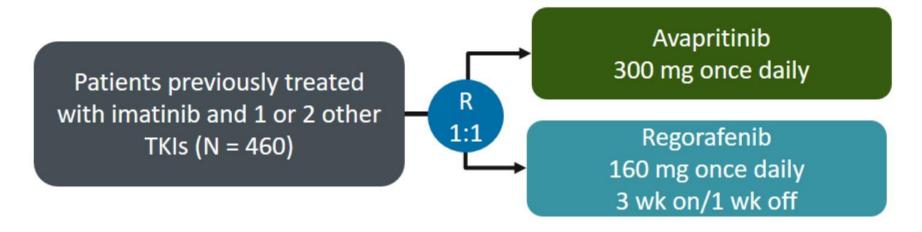
Phase 3 trial of avapritinib vs. regorafenib in 3L and 4L GIST

NAVIGATOR: Phase I study of Avapritinib in refractory GIST

Best response by central radiology in PDGFRa D842V GIST

	PDGFRα D842V n = 56	≥4L all patients n = 109	3L/4L regorafenib- naïve non-D842V n = 23	2L non-D842V n = 20
ORR (central radiology), % (n)	84% (47)	20% (22)	26% (6)	25% (5)
[95% CI]	[72-92]	[13.1-29.0]	[10.2-48.4]	[9-49]
mDOR (central radiology), months	NE	7.3	10.2	NR
[95% CI]	[NE, NE]	[7.2-NE]	[4.2-NE]	
CBR (central radiology), % (n)	96% (54)	40% (44)	70% (16)	NR
[95% CI]	[88-100]	[31.1-50.2]	[47.1-86.8]	
mPFS (central radiology), months	NE	3.7	8.6	NR
[95% CI]	[NE, NE]	[3.5-5.6]	[5.6-14.7]	
mPFS (investigator), months	22.8	5.5	10.2	NR
[95% CI]	[20.8-28.4]	[3.8-6.8]	[5.7-NE]	
Benchmarks	PDGFRα D842V Approved agents: ORR ~0% mPFS ~3 mo mOS ~15 mo	4L imatinib re-treatment: ORR ~0% PFS 1.8 mo	3L regorafenib: ORR ~5% PFS 4.8 mo	2L sunitinib: ORR ~7% PFS 6 mo

NR, not reported; mPFS, median progression-free survival; mOS, median overall survival.

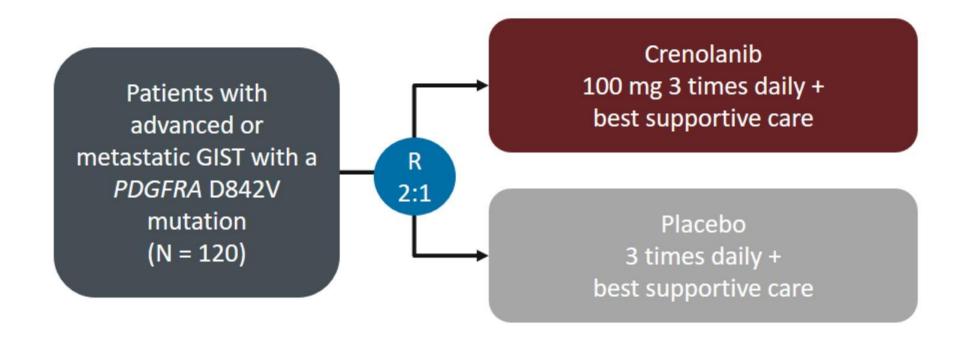

ORR is not an endpoint for 2L but is early signal readout

PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response

- Phase 1 NAVIGATOR study^[b]
 - Efficacy
 - PDGFRA exon 18 (n = 43): CBR 95%; ORR 86%; mDOR NR
 - ≥ 4th-line (n = 111): CBR 41%; ORR 22%; mDOR 10.2 mo
 - Safety
 - Grade 3/4 TRAEs: anemia (16.2%), fatigue (6.4%), bilirubin increase (3.9%), cognitive effects (3.9%), diarrhea (2.9%)

VOYAGER

Phase 3 Trial of Avapritinib in 3rd and 4th-Line GIST



Primary outcome: PFS

Secondary outcomes: ORR, OS, QoL

 Additional clinical trials are planned, including a 2ndline trial vs sunitinib that includes genotype testing

CrenoGIST Phase 3 Trial of Crenolanib in D842V-Mutated GIST

Primary outcome: PFS

Secondary outcome: OS

CONCLUSIONS

- ✓ Despite GIST being an early poster child for personalized cancer therapy therapeutic resistance is a significant problem for existing targeted therapies (imatinib, sunitinib, regorafenib)
- ✓ Understanding the biology of resistance is critical for developing new therapies
- ✓ Development of novel type I KIT/PDGFRA inhibitor Avapritinib (BLU-285, FDA Approved) and switch pocket KIT/PDGFRA inhibitor Ripretinib (DCC-2618, FDA NDA submitted) will likely significantly expand therapeutic options for patients with resistant GIST
- ✓ Ripretinib experience demonstrated potential of liquid biopsies in the drug development process

ACKNOWLEDGEMENT

ICT faculty

- Dr. Vivek Subbiah
- Dr. Jordi Rodon
- Dr. Funda Meric-Bernstam
- Dr. David Hong
- Dr. Aung Naing
- Dr. Sarina Piha-Paul
- Dr. Dan Karp
- Dr. Timothy Yap
- Dr. Shubham Pant

OUR PATIENTS AND THEIR FAMILIES

ICT Team Janku

- Dr. Kiran Madwani
- Veronica Holley
- Bhumika Prajapati
- Dr. Greg Call
- Helen Huang

Sarcoma Oncology

- Dr. Neeta Somiaih
- Dr. Shreyaskumar Patel
- Dr. Alexandra Zarzour
- Dr. Dejka Araujo

Dana Farber

Dr. Suzanne George

Princess Margaret

Dr. Albiriuni Razak

Honor Health

Dr. Michael Gordon

Deciphera

- Dr. Oliver Rosen
- Dr. Dan Flynn
- Dr. Brian Smith
- Dr. Rodrigo Riuiz-Soto
- Dr. Sergio Prados

Guardant Health

Peer-Reviewed Funding

- BioMed Valey
- Sidney Kimmel Foundation
- Khalifa Foundation
- NCI/NIH
- Elsa U Pardee Foundation
- UT Brain
- MD Anderson IRG
- Sabin Family Foundation
- Rising Tide Foundation